Mostrando postagens com marcador filtro. Mostrar todas as postagens
Mostrando postagens com marcador filtro. Mostrar todas as postagens

sábado, 15 de outubro de 2011

CUSTO OPERACIONAL

CUSTO OPERACIONAL
Nos sistemas de Abastecimento de água e coleta e tratamento de esgotos, temos algumas fases importantes no processo:
1.    O primeiro passo é o estudo de concepção e análise de viabilidade econômica financeiro do empreendimento: Esta é uma fase decisória, e deve ser montada uma estratégia que contemple o projeto a execução e a operação e manutenção, pois conceber uma solução de projeto onde não se consegue operar ou ter uma manutenção constante e carea, é causar prejuízo ao contratante.

2.    Estando com a concepção pronta inicia-se a fase de projeto, que deve atentar-se para os aspectos operacionais e de manutenção, com o menor custo possível. Se temos uma captação em um local distante da unidade de tratamento, é fundamental que seja contemplada com todos os itens de automação para permitir que quando faltar energia na captação, este evento seja informado na unidade de tratamento, para evitar deslocamentos desnecessários, e perda de tempo e dinheiro. Neste caso quando retornar a energia deve ser possível ligar e desligar remotamente o sistema.


3.    Projeto pronto inicia-se a fase de execução, que constitui um dos principais itens de garantia de sucesso do que foi projetado. Assim quando em uma rede coletora de esgoto prevemos uma taxa de infiltração limitada a norma técnica, esperamos que a construção garanta que este limite não seja ultrapassado sob pena de inviabilizar-mos o projeto.


4.    Obra pronta inicia-se a fase operacional, é uma fase que deve ser monitorada em todas as suas fases, principalmente os equipamentos eletromecânicos, e é agora que se confirma o que foi planejado, projetado e construído. Porém o que se observa, é que na maioria dos sistemas a vazão é um item apenas conhecido pelas plaquetas das bombas, e se tem calha parshall, esta não é dotada de medidores permanentes.


5.    Um sistema em operação deve obviamente ter um plano de manutenção constante. Porém sempre prevalece a condição de construir, operar, e abandonar a manutenção preventiva e somente atuar quando ocorrem panes e onde a manutenção corretiva faz-se necessário.


As fases de concepção, projeto e construção tem prazos definidos de inicio e fim, porém a operação é infinita e tem seu custo atrelado ao modo como foi finalizado cada uma destas etapas: A seguir citamos alguns exemplos de como estas fases influenciam no custo operacional do empreendimento.


a)   Quando não se agrega a automação a um projeto, temos a necessidade de contratação de mão de obra para operar uma captação com elevado custo e serviços de rotinas insignificantes. Pior ainda quando os reservatórios não são dotados de controladores de niveis, e o extravasamento torna-se uma rotina. 

b)   Na fase de projeto quando não se dimensiona uma adutora, sub adutora, emissário utilizando critérios hidráulicos e econômicos, temos em algumas situações potencias desnecessárias, elevando significativamente o custo da energia elétrica, pois sempre existiu a cultura de reduzir diãmetros ao máximo, buscando minimizar o custo de implantação.

c)    Projetos que contemplam apenas uma unidade de bombeamento para etapas de projetos muito longas conduzem a potencia de elevatórias que devem funcionar com registros estrangulados, inserindo cargas adicionais, e elevando o custo operacional.

d)   Redes de distribuição com material de baixa qualidade, e de péssima execução conduzem a perdas que oneram a operação necessitando de constantes reparos, e ou maior volume de água para atendimento do abastecimento.

e)   Redes coletoras com material de baixa qualidade e execução sem critérios conduzem a infiltrações que inviabilizam o processo de tratamento, com elevada diluição do efluente.

f)     O projeto deve prever que a operação em 24 h, somente deve ocorrer no fim da vida útil do mesmo, caso contrário já “nasce morto”; É óbvio porém que este projeto deve ser dotado de 100% de micromedição, pois caso contrário o que se concebe na prancheta (ainda existe?) não ocorre no campo.

g)    Um sistema de cloração com tina, cloro granulado, bomba dosadora, sempre será mais barato do que um sistema gerador de cloro, porém o custo operacional do segundo irá diluir este custo visto que na operação a exigência é de apenas sal, que é de baixo custo.

h)   Uma ETA simplificada e de baixo custo como o Filtro duplo, ou superfiltração, é sempre muito mais vantajoso operacionalmente que um ETA convencional, de operação complexa e elevado custo operacional.

i)     As ventosas e descargas são imprescindíveis em qualquer unidade de bombeamento, e devem ser mantidas rotineiramente.

j)    Um projeto sem definições de zonas de pressão e sem medidores, é um projeto sem condições de operação conforme concebido.

k)    As válvulas de controle são fundamentais em tosos os projetos visto que reduzem os custos operacionais.


Curiosidades:


Já assistimos adutoras terem o desempenho abaixo do esperado, simplesmente porque o construtor não liberou o lacre de fabrica, que protege os furos das ventosas.


   Capacete na Tubulação:

 A fase de assentamento de redes de distribuição, e coletoras devem ser supervisionadas, e “policiadas”, pois existem relatos de funcionários insatisfeitos, que simplesmente “abandonam” o capacete e ou outros objetos dentro da tubulação na fase de assentamento, tais como pedras, tocos de madeira, plásticos etc.


Filtros:

Ao se projetar um filtro a principal condição é garantir que o mesmo tenha condições de ser lavado, como ocorre nas ETAs onde as unidades em operação lavam em contracorrente.

Agora imaginem um filtro em um canal que alimenta uma captação. Pois até isto já existiu,....... e o sistema teve que ser abandonado, pois quando ocorreu a colmatação do filtro, este não tinha como ser lavado.
E muitos erros de concepção, de projetos e de execução ainda virão. E também de operação pois atualmente é muito grande a rotatividade de operados não adequadamente treinados.

sábado, 25 de dezembro de 2010

TRATAMENTO DE ÁGUA - OSMOSE REVERSA

TRATAMENTO DE ÁGUA - OSMOSE REVERSA


Qualquer processo de tratamento de água, tem como objetivo a separação de um solvente de um soluto. Um processo de separação é um processo que permite separar componentes de uma mistura, tanto em pequena escala, como nos laboratórios, quanto em grande, como nas estações de tratamento, e diversas outras. Existem diversos processos, destinados a fins diferentes sendo que dentre os processos de separação de um soluto destacam-se:

• Destilação

• Decantação

• Evaporação

• Filtração

• Flotação

• Processos de separação por membranas

Vamos nos concentrar no processo de separação por membranas, também denominada osmose inversa, onde as membranas retêm partículas cujo diâmetro varia entre 1 e 10 Å, sendo 1 angstrom = 1.0 × 10-10 metros

As partículas retidas são solutos de baixa massa molecular como sais ou moléculas orgânicas simples, e sendo a água um solvente inorgânico, polar, chamado frequentemente de "solvente universal" tem facilmente dissolvidas muitas substâncias.

Para que seja possivel ocorrer ocorrer a separação por membranas, deve-se aplicar uma grande pressão sobre o meio aquoso, o que contraria o fluxo natural da osmose. Por essa razão o processo é denominado osmose reversa.

Os usos da osmose reversa são diversos, sempre relacionados à separação de ions. Dentre os quais destaca-se:

Dessalinização de água do mar: Tanto para consumo humano quanto para outros processos, onde a membrana de Osmose Reversa pode reduzir a concentração de cloreto de sódio de 35.000 mg/L para 350 mg/L.

Irrigação: Um dos problemas da agricultura é a acumulação de sais no solo em função da irrigação com água de rios ou poços. A partir de certo patamar os sais tornam-se nocivos às plantações. A Osmose Reversa é capaz de remover este excesso de sais de forma economicamente viável.

Alimentação de caldeiras: Caldeiras exigem água puríssima, pois a evaporação da água causa a incrustração da superfície dos tubos pelos sólidos presentes na mesma, reduzindo a transferência de calor, aumentando o consumo de combustível e o risco de explosões. A osmose reversa, têm sido o tratamento mais utilizado nestes casos.

Produção de produtos químicos: Hospitais, conglomerados farmacêuticos e laboratórios utilizam o processo de Osmose Reversa para garantira máxima pureza em seus produtos. Processos de hemodiálise são alimentados com água desmineralizada ou destilada.

Recuperação de águas residuais na indústria: Concentração de sucos, proteínas e vinho na indústria alimentícia.

A osmose Reversa

Osmose pode ser descrita como um movimento físico de um solvente através de uma membrana semipermeável, baseada na diferença do potencial químico entre duas soluções separadas por essa membrana.

O exemplo a seguir serve como demonstração e esclarecimento desta matéria. Um recipiente de boca larga com água, conforme fig. 1 é dividido no meio por uma membrana semipermeável. A linha tracejada representa a membrana semipermeável. Iremos definir a membrana semipermeável como falta de capacidade para difundir qualquer outra substância, além do solvente, neste caso moléculas de água.

                                                                        Figura 1

Agora adicionaremos um pouco de sal de cozinha (NaCl) à solução de um lado da membrana (Fig. 2). A solução de água salgada tem um maior potencial químico, do que a solução de água do outro lado da membrana. Num esforço para equilibrar a diferença no potencial químico, a água começa a difundir pela membrana, de uma lado através da água, e de outro lado para a água salgada. Este movimento é a Osmose. A pressão exercida por esta transferência de massa é conhecida pela pressão osmótica.

                                                           Figura 2

A difusão da água irá continuar até que uma das duas reservas seja conhecida. Uma reserva pode ser a solução essencialmente de equilíbrio, pelo menos até que ao ponto em que a diferença restante no potencial químico é compensado pela resistência ou perda de pressão de difusão pela membrana. A outra reserva é que a coluna em elevação de água salgada exerce pressão hidrostática suficiente para limitar outras difusões. Observando-as, podemos mensurar a pressão osmótica da solução, observando o ponto em que a pressão principal impede outras difusões.

Exercendo uma pressão hidráulica maior do que a soma da diferença de pressão osmótica e a perda de pressão da difusão pela membrana, podemos utilizar a água para difundir na posição contrária (Fig. 3), na solução de maior concentração. Isto é a osmose reversa. Quanto maior for a pressão aplicada, mais rápida é a difusão. Utilizando a osmose reversa, estamos aptos a concentrar diversos solutos, tanto dissolvidos como dispersos em uma solução.

                                                                           Figura 3

Tipos de Membranas

Existem vários tipos de membranas, podendo ser citadas as do tipo:

1. - Acetato de Celulose

2. - Poliamidas Aromáticas-Aramidas

3. - Poliamidas Hidrazidas: por serem fibras finas e ocas, possuem uma estrutura, mas fechada, possibilitando trabalhar com água do mar com salinidade de 45.000 ppm.

4. - Poliamida de composição avançada

5. - Polisulfonas – polisulfonadas:

Desempenho das Membranas

As causas abaixo podem alterar o desempenho e o tempo de vida das membranas utilizadas como osmose reversa.

1. - pH da água: a variação de pH nas faixas fortemente ácidas ou fortemente alcalinas afeta as diferentes membranas utilizadas.

2. - Temperatura: As membranas de acetato de celulose se hidrolizam, quando a temperatura da água excede 30º.

3. - Compactação ou Deformação Física: estes problemas podem acontecer nas membranas, quando as pressões de bombeamento da água bruta excedem de 90 kgf/cm2.

4. - Cloro livre: sendo o cloro livre um agente oxidante energético, ele pode afetar a maioria das membranas, sendo nestes casos, necessária a decloração da água bruta.

5. - Fouling: É produzido no interior da membrana, pela associação de sólidos suspensos e material biológico.

6. - Incrustações: na malha de membrana, a água bruta precipita dureza temporária, carbonato de cálcio e hidróxido de magnésio e dureza permanente, sulfato de cálcio. A dureza temporária é impedida de precipitar, trabalhando-se com valores de pH da água bruta, entre 4,5 – 5,0. A dureza permanente é impedida de precipitar, dosando-se continuamente, um antiincrustante específico para sulfato de cálcio.


Vídeo:

Um ovo é colocado no xarope de milho durante 60 minutos para mostrar osmose. O óvulo é então colocado em água doce para mostrar o efeito inverso.

sábado, 3 de julho de 2010

TRATAMENTO DE ÁGUA EM COMUNIDADES DE PEQUENO PORTE

As Comunidades de Pequeno Porte geralmente tem o seu núcleo urbano próximo a um manancial de superfície, e apesar de poderem observar um belo caudal, não utilizam a água para consumo, em decorrência da necessidade de um tratamento adequado. Quando nas pequenas comunidades a solução de poços se mostra inviável, tem-se como conseqüência uma deficiência no abastecimento de água tendo em vista que o tratamento convencional, das águas de superfície tem-se mostrado muito oneroso, tanto na fase de implantação como na fase de operação. Como alternativa apresentamos o tratamento através da utilização de um Superfiltro, seqüenciado pela simples desinfecção, com preparo da solução em tanques em uma sala de cloração.


Superfiltro:

A superfiltração, ou dupla filtração, é uma geração de instalações de tratamento de água, aplicável às pequenas comunidades, com grandes vantagens técnicas e econômicas.

A idéia que suscitou a superfiltração decorreu de observações relativas ao comportamento dos filtros russos (clarificadores de contato). A experiência demonstra que estes filtros de fluxo ascendente realizam com eficiência, a floculação, a clarificação e a filtração da água, evitando a necessidade de tratamento prévio em floculadores e decantadores. Constatou-se na realidade que a coagulação e a floculação, realizada em meio poroso e na presença de compostos previamente precipitados, conduzem a resultados excelentes, podendo permitir considerável economia de reagentes. Assim aliando as vantagens reconhecidas dos clarificadores de contato (filtro russo), com a segurança dos filtros rápidos convencionais, surgiu então os “superfiltros” com dupla filtração. Neste caso o filtro russo realiza as funções para os quais são mais indicados, ou seja, a floculação, a sedimentação, e a filtração preliminar, competindo ao filtro convencional com leito de material mais fino, a função complementar, isto é, a filtração mais perfeita e mais segura.


Super filtro duplo de gravidade

No processo de clarificação (filtro ascendente), a água é aplicada com taxa entre 120 e 150 m³/m²/dia, a mesma taxa sendo aplicada na filtração final. A lavagem é feita com vazão entre 0,40 e 0,50 m³/min.

Material filtrante e camada suporte:

O leito de contato é projetado com uma camada de 1,00m de areia preparada com as seguintes características:

Tamanho efetivo entre 0,75 e 0,85mm e coeficiente de uniformidade inferior a 2,0
O filtro rápido compreende uma camada filtrante de areia mais fina composta de duas partes: 0,25m de areia de tamanho efetivo entre 0,45 e 0,55 mm e coeficiente de uniformidade inferior a 1,7 e 0,20 de areia grossa com tamanho efetivo entre 0,8 e 1,2 mm.

A camada suporte para ambos os casos é constituída por quatro subcamadas totalizando 40 cm.

6 a 3 mm...............9 cm
12 a 6 mm..............9 cm
25 a 12 mm............14,0 cm
30 a 25 mm.............8,0 cm

O fundo dos filtros deve ser executado com chapas perfuradas, com orifícios uniformemente distribuídos, perfazendo uma área de 0,25 a 0,35% da superfície.

Descrição do Funcionamento

A água bruta proveniente de mina, córregos, represas, ou de drenos, recebe a dosagem de coagulante comum, geralmente o sulfato de alumínio, dosado por uma bomba dosadora; e entra no espaço central do filtro ascendente, por meio de uma chapa perfurada que distribui o fluxo na camada suporte, a seguir a água flui pela camada de areia, e neste trajeto da água processa-se a sua floculação e a primeira filtração.
A seguir a água já clarificada escoa para o segundo filtro rápido, com movimento descendente da água, atravessando a camada filtrante conforme descrito anteriormente, e a chapa perfurada sendo encaminhada ao reservatório de acumulação onde receberá o cloro, e será bombeada para o reservatório de acumulação e contato com o cloro.
O sistema de lavagem dos filtros faz-se por meio do retorno do reservatório elevado, devendo, portanto processar uma manobra de registros, fazendo com que a água de lavagem entre em fluxo invertido no filtro rápido, removendo as impurezas, e descarregando em uma calha que conduz a água de lavagem para o sistema de drenagem; estando limpo o filtro rápido fecha-se a descarga da calha, e todo volume passará a verter no filtro russo, operando a lavagem em contra fluxo.


Custo


O custo de instalação do sistema de superfiltração tem custo muito inferior a sistemas de tratamento convencionais, acrescido de que as despesas de operação também são muito menores, não só pela simplicidade operacional, como pelo menor consumo de reajentes, além de que os superfiltros produzem água de excelente qualidade, com maior segurança biológica; alia-se a estes fatores as facilidades de construção, e de transporte, razão de sua seleção para projetos de abastecimento de água em comunidades de pequeno porte.

ÁGUA CONTAMINADA EM BARÃO DE MELGAÇO

  ÁGUA CONTAMINADA EM BARÃO DE MELGAÇO   A notícia foi estampada em diversos jornais, água contaminada em Barão de Melgaço   A CAUSA: ...